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Eigenmode Analysis and Reduced-Order Modeling of Unsteady

Transonic Potential Flow Around Airfoils

Razvan Florea,* Kenneth C. Hall," and Earl H. Dowell*
Duke University, Durham, North Carolina 27708-0300

An eigenmode analysis and reduced-order models of the unsteady transonic aerodynamic flow around isolated
airfoils are presented. The unsteady flow is modeled using the time-linearized frequency-domain unsteady transonic
full potential equation. The full potential was discretized in space using a finite element method. The resulting
equations are linear in the unknown velocity potential and quadratic in the reduced frequency of excitation. The
dominant eigenfrequencies and corresponding mode shapes of the discretized potential model are computed, and
the effect of different parameters that determine the steady and unsteady flowfield (e.g., the far-field Mach number,
the angle of attack, and the airfoil shape) are investigated. A normal mode analysis and a static correction technique
are then used to construct a low degree-of-freedom, reduced-order model of the unsteady flowfield. Depending on
the range of frequencies of interest, a relatively small number of eigenmodes are required. An alternative reduced-
order modeling technique based on Arnoldi-Ritz vectors is also presented. For the case where the structural
excitations are known a priori, the latter method is more efficient. Using the aerodynamic reduced-order models,
we construct aeroelastic reduced-order models and compute flutter boundaries for different airfoils at several

different Mach numbers.

Nomenclature
A, = matrix operator for the Krylov/Arnoldi subspace
Ay, > = unsteady aerodynamic matrices
A = state-space form unsteady aerodynamic matrix

Ap = aeroelastic matrix

a = pitch axis location, normalized by semichord

B = state-space form unsteady aerodynamic matrix

Br = aeroelastic matrix

b = semichord

b = frequency-independent vector, right-hand side of Eq. (8)
b1, = frequency-independent vectors, right-hand side of Eq. (7)

c = chord
4] = linearized unsteady lift coefficient

Cmea = linearized unsteady moment coefficient about
the elastic axis
gNe) = participation factor in the solution with N, static

corrections, Eq. (11)
H® nonsymmetric upper Hessenberg matrix
h = plunge degree of freedom
h
I

= airfoil displacement vector, [/, a]”
identity matrix of order 2

J = /-1

K = nondimensional elastic stiffness matrix

M = nondimensional mass matrix

N, = number of static corrections

q = vector of generalized linearized unsteady aerodynamic
forces, [¢;, Cpeal”

o = radius of gyration, normalized by semichord

s = complex shift

T® = upper triangular matrix at step k, Eq. (19)

Tl?;ll = matrices relating airfoil motion & to generalized forces ¢

Presented at the CEAS/ATAA/ICASE/NASA Langley International Fo-
rum on Aeroelasticity and Structural Dynamics, Williamsburg, VA, 22-25
June 1999; received 12 July 1999; revision received 29 November 1999;
accepted for publication 12 December 1999. Copyright © 2000 by the au-
thors. Published by the American Institute of Aeronautics and Astronautics,
Inc., with permission.

* Assistant Research Professor, Department of Mechanical Engineering
and Materials Science. Member AIAA.

 Associate Professor, Department of Mechanical Engineering and Mate-
rials Science. Associate Fellow AIAA.

#Professor, Department of Mechanical Engineering and Materials Sci-
ence. Fellow AIAA.

454

4y, = matricesrelating vector potential ¢ to generalized
forces ¢q

t = time

reduced velocity, Vi, / (bw,)

state-space solution vector

dynamic part, state-space solution vector

Ug = static part, state-space solution vector

Ve = freestream velocity

orthonormal Arnoldi subspace

Cartesian coordinates

static unbalance, normalized by semichord

right and left eigenvectors

eigenvector and matrix of eigenvectors of H®

= pitching degree of freedom

= steady (mean) flow angle of attack

eigenvalue, j

aeroelastic eigenvalue

mass ratio, m/(zpb?)

artificial viscosity

= static density

= eigenvalue, diagonal matrix of eigenvalues of H'

= velocity potential

frequency,rad/s

= reduced frequency, wc/ Vi,

= plunge natural frequency

= pitch natural frequency
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I. Introduction

VER the last decade, computational aerodynamic models of

unsteady flows about airfoils and wings have become increas-
ingly sophisticated and accurate. However, when used in aeroe-
lastic analyses, such methods are extremely expensive. In most of
these analyses, time-marching, time-accurate computational fluid
dynamiccodesare used. These modelshave several advantages:they
are well developed and documented, straightforward to implement,
and can be used in both linear and nonlinear analyses. Neverthe-
less, these computational models are not well suited to aeroelastic
calculations because they require relatively small time steps and,
therefore, require large amounts of CPU time. Furthermore, when
repeated calculations are required, the analysis must be run repeat-
edly, increasing cost. For each new structural parameter, frequency,
or mode shape of structural vibration, a complete new simulation
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is required. For a review of current trends in aeroelasticity we refer
the reader to Refs. 1 and 2.

A first step in improving the computational efficiency of aeroe-
lastic analyses is to use time-linearized unsteady models. In this
approach, one assumes that the unsteady flowfield is decomposed
into a mean (steady) flow and a small-disturbance unsteady flow.
The resulting small-disturbance equations are time-invariant vari-
able coefficient equations and can be formulated in either the time
or frequency domain. One first solves for the nonlinear mean flow
and then for the time-linearized unsteady flow. Although time-
linearized models are computationally more efficient then time-
nonlinear methods, they are subject to some of the same restric-
tions mentioned earlier when used for repeated computations with
different parameters.

Recently, so-calledreduced-ordermodels have been developedto
improve further the efficiency of unsteady aerodynamic and aeroe-
lastic analyses. Some of these techniques are well established in
structural dynamics and, therefore, it seems natural to extend them
to unsteady aerodynamics. In these methods, one reduces the large
number of degrees-of-freedom unsteady aerodynamic model to a
system with a much smaller number of states. At the same time,
one wants to preserve the accuracy of the original model for some
range of parameters, for example, over some range of frequenciesof
interest. Eigenmode-basedreduced-ordermodels for unsteady aero-
dynamic flows about airfoils, wings, and turbomachinery cascades
have been constructed by Hall,? Florea and Hall,* Romanowski and
Dowell,’ and Florea et al.® Using this approach, the dominanteigen-
vectors of the linearized unsteady flows are computed, and then the
unsteady flow solution is projected onto the space defined by these
vectors. One or more static corrections are applied to improve the
accuracy of the method.

Several other reduced-order modeling methods have been re-
cently developed. Baker et al.” have applied internal balance re-
duction techniques to relatively simple two- and three-dimensional
flows discretized with a vortex-lattice method. Although the results
were promising, no complex unsteady flow model reductions were
presented in Ref. 7.

More recently, reduced-order modeling technique based on
proper orthogonal decomposition have been developed. Exten-
sive reviews of this technique were published by Sirovich® and
by Holmes et al.” Romanowski'® has applied this method to cre-
ate aeroelastic reduced-order models of time-linearized unsteady
two-dimensional flows around isolated airfoils. Kim'' used a sim-
ilar approach to create reduced-order models of time-linearized,
frequency-domain unsteady flows around a three-dimensional
vortex-lattice model of a rectangular wing. At the same time,
Hall et al.'? constructed reduced-order models of time-linearized,
frequency-domainunsteady flows around two-dimensionalisolated
airfoils and cascades.

In this paper, we present two reduced-ordermodeling techniques
of small-disturbance, frequency-domain, unsteady transonic full-
potential flows around isolated airfoils. First, an eigenmode anal-
ysis of the unsteady flow for several freestream Mach numbers,
angles of attack, and airfoil shapes is performed. Then, we apply
the conceptsdeveloped by Florea and Hall* to constructeigenmode-
basedreduced-ordermodels of the unsteady transonic flow. We also
present an alternative and more efficient reduction technique based
on Arnoldi-Ritz vectors. The latter method is shown to be effec-
tive for the high subsonic and transonic regimes where the number
of eigenmodes required in the eigenmode-basedreduction is larger
than the corresponding number of Arnoldi-Ritz vectors.

II. Nonlinear Mean Flow and Linearized
Unsteady Flowfield Description

We consider the unsteady transonic flow around an isolated two-
dimensional airfoil due to vibratory motion of the airfoil. The flow
is assumed irrotational and isentropic, and thus only weak shocks
are considered. Under these conditions, the unsteady transonic full-
potential equation can be used to model the flowfield around the
airfoil. The unsteady transonic full-potential equation is given by

op N
a—’;+V-(ﬁV¢) =0 (1)

where ¢ is the velocity potential. The quantity § is the local density
defined by the unsteady isentropic relation

S R VT CT B
p-—pr{l ” pr(at-FZ(v¢))} (2)

where pr and pr are the total density and total pressure (assumed
to be constant throughout the entire field). Appropriate boundary
conditions are used to enforce the airfoil surface impermeability
condition, Kutta condition, and correct far-field behavior. Details
of the flow linearization and discretization and of the boundary
conditions for subsonic flows are given in Ref. 4.

A Galerkin finite element method with isoparametric quadrilat-
eral bilinear elements is used to discretize the spatial derivatives of
the flow equations and boundary conditions. This method is an ex-
tension of the variational finite element method developed by Hall
for unsteady small-disturbance flows.!? To improve the accuracy
of the method, we use a strained coordinate system that moves with
the airfoil near the airfoil and that is fixed in the far field. To produce
the numerical dissipation necessary for the stability of supersonic
flow solutions and to capture possible shocks, the local density in
the divergence term of Eq. (1) is upwinded. Following Habashi and
Hafez,'* §,, the local density in the element e of the finite element
discretization, is replaced by

Pe =Pe = APe = Pe-1) 3)

where e — 1 indicates the upstreamelement. The switching operator
¥ is defined by Whitehead and Newton'® as

v=w+ (1 -1/M, M =1
U= vy MY e M=), M <1 4)
with
M =max(M,, M, _,) (5)

defining the local reference Mach number. The quantities v, and v
are constants with typical values vy =0.04 and v; =20.

A furthersimplificationis made by assumingthat the unsteadiness
in the flow is small compared to the mean flow. This is consistent
with the onset of flutter where the airfoil vibration and the resulting
unsteady flow are small. The unsteady velocity potential and the
moving grid are assumed to be harmonic in time, with frequency .
For example,

Px,y) =D(x, ) + §(x, y) e/ (6)

where ¢ is the unsteady small-disturbance potential and @ is the
mean (steady) flow potential. Next, we time linearize the spatially
discretized, unsteady full-potential system of equations. First, by
collecting the zeroth-order terms from the linearization, we obtain
a nonlinear system of equations that describes the mean flow. This
systemis just the discretizationof the steady form of Egs. (1-5) and
the appropriateboundary conditions. Next, collecting the first-order
terms from the linearization, we obtain a linear variable coefficient
matrix equation for the unsteady small-disturbance flow in the fre-
quency domain. The resulting discretized unsteady field equations
and the corresponding boundary conditions have a quadratic form
in the frequency domain ®, namely,

(A0 + joA, + ?As)p =by + job, + o’b, )

where the matrices Ay, A;, and A, are real nonsymmetric n Xn
matrices, and where n is the number of unknown entries in the
vector ¢. The matrices Ay, A, and A, depend only on the nonlinear
mean flow solution, while the vectors by, b, and b, depend on both
the mean flow solution and the prescribed motion of the airfoil.
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We solve for the steady nonlinear mean flow solution using
a direct Newton method. For the linearized unsteady equation,
Eq. (7), the usual approach is to form the matrix coefficient
A(®) =A + joA,| + ©’A, foreachfrequency m and mode of vibra-
tion (e.g., pitch or plunge) and then solve the resulting system using
lower-upper (LU) decomposition. In the next section, we describe
two alternative reduced-order modeling approaches.

III. Reduced-Order Modeling

A. Aerodynamic Reduced-Order Modeling Using Eigenmodes

An alternative approach for solving Eq. (7) is to use a normal
mode analysis. First we observe that the right-hand side of Eq. (7)
is a linear combination of the frequency-independant vectors by,
b, and b,. Hence, one can solve Eq. (7) for each constant right-
hand side vector b; and then use the superpositionmethod to obtain
the solution of the original equation. To simplify our analysis, we
assume that the right-hand side in Eq. (7) is a constant vector b.
Also, for convenience, we rewrite this equationin state-space form,
that is,

a A\ )77\ o)L JT)
[ S ——; N ~——
A u B u b

where G is any nonsingular matrix. We first solve for the lower-
frequency eigenvalues A; and the correspondingrightand left eigen-
vectors, x; and y;, of the homogeneous form of the matrix system
Eq. (8), that is,

Ax; — A;Bx; =0, yA=-2yIB =0 )
To compute the eigenvaluesand the correspondingeigenvectorsnu-
merically, one can use iterative Krylov techniques. We apply the
non-symmetric Lanczos (see Ref. 16) and the block-Arnoldi (see
Ref. 17) algorithms, both implemented to take into account the
sparse, quadratic, generalized form of Egs. (8) and (9).

Next, following Ref. 4, the unsteady solution is divided into two
parts, a generalizedstatic partu g, that does not depend on the eigen-
frequencies and eigenmodes, but may depend on the frequency of
excitation o, and a generalized dynamic part up, that depends on
both the eigeninformation (eigenfrequencies and eigenmodes) and
the frequency, that is,

N¢ m
u ZZ(jw)k_lu&,k + Zgi(N()xi
e (10)

i=1
—
Us u,

where g; V) is the participation factor given by
g™ = (ol )" [y Bl (4 - jo)] (1)
The static correction terms are defined by

.Aum ZE, .Auglyk =Bu5$k_1 (12)
for k > 1. N, is the number of static corrections and m <<2n is the
number of eigensolutions used in the modal expansion. We seek
a solution ¢ given by Egs. (10-12) that approximates the exact
solution, the latter corresponding to m =2n. That is, we want to
reduce the contributionof the neglected modes without substantially
increasingm. We can reduce the importance of each neglected mode
by requiring that

ljo/ 1Y <« 1 (13)

for all of the neglected eigenmodes, i > m. Hence, we need to com-
pute all of the eigenvalues and corresponding eigenmodes in the
range of frequency of interest, and N, should be as large as pos-
sible. However, the leading-order terms in each of the two series
grow rapidly with increasing N,. For large N,, significant roundoff

errors in the evaluation of the sum of two series in Eq. (13) occur
and the method breaks down. We have found that good results are
generally obtained for values of N, between one and six (see Ref. 4
for details).

In the next section we will examine more closely the eigenvector
solver as part of the reduced-ordermodeling technique and provide
an alternative reduced-order model construction.

B. Aerodynamic Reduced-Order Modeling
Using Arnoldi-Ritz Vectors

We use Krylov subspace methods to compute the eigenmodes
of interest. These methods are efficient as long as the number
of eigenfrequencies of interest is small. In such methods, start-
ing with an initial arbitrary vector W; and for the matrix opera-
tor A4 =A"'B, one computes iteratively a sequence of vectors,
W, =AW, W3 =A,W,, and so on, called Krylov vectors. These
vectors form a subspace thatapproximatesthe subspace of dominant
right eigenvectorsof the eigenvalue problem defined by Eq. (9). We
denote the matrix formed with the first k Krylov vectors by W®,
that is,

WO =W, | AW, |-+ AWy ] (14)
If we choose the initial vector W, to be
Wl =Ugs, ZA_lE (15)

then the static contributionin Eq. (10) u; is just a linear combination
of the columns of the Krylov matrix W®, that is,

us =who, Q=[1ljol--1Go) 1" 16)

The Krylov iteration becomes unstable after a few steps, unless it
is coupled with an orthonormalizationprocess. For example, in the
Arnoldi method, one starts with a unit vector V, =W, /||W,|l,, and,
at step k, the new vector A,V _ is first orthonormalized against
previous vectors V; to V, _ | beforeitis introducedas the new vector
V, in the sequence. These vectors are now called Arnoldi vectors
and they form the (2n X k) orthonormal matrix V' and satisfy the
relation

k) —yoH g=1 (k)
H VO (AT'B) Y (17

As

where H® is a complex nonsymmetric upper Hessenberg matrix
whose columns are easily computed during the Arnoldi iteration.
The dominant eigenvalues of the matrix A, are approximated by
the dominant eigenvalues of the upper Hessenberg matrix H®). We
denote by o; and z; the ith largest eigenvalue and the corresponding
eigenvector of the matrix H*, and A; and x; are approximated by

A= 1o, x; = Vg (18)

Note that V¥ and W® span the same vector space and
w® =y k) (19)

where T™® is a (k X k) upper triangular matrix.

Taking into account Egs. (10), (11), (16), (18), and (19), the
reduced-ordermodel solution can be written as a linear combination
of the columns of V¥, that is,

u =pv®(zg + TV0), B =lusll. (20
For known external excitations (airfoil motions), it is convenient
to use V| =ug /3 as the starting vector in the Arnoldi iteration
without explicitly computing the eigenmodes defined by Eq. (9).
This approach eliminates the need of a separate static correction
step and greatly simplifies the reduced-order modeling algorithm.
This method, a form of Ritz-based reduction, is similar to methods
widely used in structural dynamics.'® 1

Note that in the case of multiple right-hand side excitations (air-
foil motions), the Krylov subspace iteration is replaced by a block-
Krylov method.!” For example, we consider the case of an isolated
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airfoil in pitch and plunge motion described by the airfoil displace-
ment vector k. We can write the Ritz- Arnoldi approximate solution
as

u=V9Zu, @2n

We substitute Eq. (21) into }ihe original Eq. (8), we multiply at the
leftby A~! and thenby V¥ and, taking into account the property
stated in Eq. (17), we obtain

I
ug =(I = jo)"'z7' | job |h (22)
@I

where X is the diagonal matrix of the eigenvalues of H®. The
orthonormal matrix V® is determined iteratively during the block
Arnoldi iteration with V| being the starting block (matrix). The
(2n X 6) matrix V; and the (6 X 6) upper triangular matrix 3 are
defined by the equation

= A" [bo, boo | b1, b1 | bay, by
VilBy|Bi |81 =4 [0/1_ oa | 1/1_1 | 2/1_2]
I¢] bo b b,

(23)

where 3,, B,, B, are now (k X2) matrices, and by, by, and b, are
(2n X 2) matrices.

Note that similar Ritz reduced-order models can be constructed
around the Lanczos algorithm. For our analysis we found that the
nonsymmetric Lanczos algorithm proved to be more reliable for
eigenmode computations, whereas the block Arnoldi algorithm was
more efficient for the direct Ritz reduction.

C. Flutter Analysis: Aeroelastic Reduced-Order Modeling

We consider here a two-degree-of-freedomairfoil. The structural
dynamic equations in plunge and pitch can be written as

M K
1 x,/2 o,/ 0)> 0
—? | + o2 (/%) | h
xal2 ri 4 0 r2l 2

= (o2l 4)g = (19, + joTl, )¢ + (T, + joTl )k (24)

The matrices Tg;; and T&ll relate the potential vector ¢ and the
airfoil motion Ak to the generalized forces g acting on the airfoil.
These matrices are obtained by integrating the linearized unsteady
pressure distribution over the airfoil. By combining the unsteady
aerodynamic equations, Eq. (8), and the structural dynamic equa-
tions, Eq. (24), the aeroelastic eigenvalue equations in state-space
form are obtained, that is,

Ar Br
A | -b, —b, B | —-b,|-0 u
0 L 0 - O O |I Arh} =0
—TL?q —Tﬁq K- qu T,flq -M| 0 h
(25)
where the matrices
Ty, =[0175,], T, =[o11},] (26)

relate the state-space vector u to the generalized forces g acting on
the airfoil.

Note that the flutter matrices A and By are quite large, of order
(2n + 4), and depend on both aerodynamic and structural param-
eters. Using the Arnoldi-Ritz reduced-orderaerodynamic solution,

described by Egs. (22) and (23), the eigenvalue problem Eq. (25)
can be reduced to a much smaller reduced-orderaeroelastic system
of equations, that is,

I _[31 _[30
0 I, 0
70 vk 7! _ 70
Tqu zZ Thq K Thq
z =B, -0 Ur
— A‘F 0 0 Iz A,Fh = 0 (27)
T,,llq vz | -M| 0 h

The aeroelastic reduced-order model can be used to compute the
aeroelastic eigenvalues inside the domain of reduced frequencies
where the aerodynamic reduced-ordermodel is valid.

IV. Results

In this section, we present an eigenmode analysis and construct
reduced-order models for unsteady flows around two isolated air-
foils,a NACA 0012 symmetric airfoil and an MBB A3 nonsymmet-
ric airfoil. We also compute flutter boundaries of the MBB A3 airfoil
and NACA 64A010 (NASA Ames Research Center) airfoils for dif-
ferent Mach numbers. The computational grids used in all cases
presented are O grids with a radius of 10 chords, with 129 X51
mesh points (129 nodes around the airfoil and 51 nodes in the radial
direction). A typical grid is shown if Fig. 1. This mesh point den-
sity is sufficient to ensure accurate steady solutions and unsteady
solutions up to a reduced frequency of @ =2.0.

A. Eigenspectrum

We first consider the steady and small perturbationunsteady flow
around a NACA 0012 airfoil for several different Mach numbers
and angles of attack. In each of these cases, we compute the eigen-
spectrum of the corresponding discretized unsteady potential flow.
Shown in Fig. 2 is the eigenvalue distribution for the unsteady flow
around a NACA 0012 airfoil for several different freestream Mach
numbers M. at zero angle of attack. For each of these cases we
also show the steady Mach number distribution over the airfoil. For
M, =0.1, the flow is, for all practical matters, incompressible. For
M., =0.7, the flowfield is close to transonic, the highestlocal Mach
number on the airfoil being 0.94. For M., =0.85, the flowfield be-
comes strongly transonic and the isentropic potential flow model
is less accurate. Note that around the origin, the eigenspectrum is
defined by lines of eigenvalues that emanate from the origin. These
eigenvaluestend to be very close, and closer as the freestream Mach
number increases. These lines of eigenvalues correspondto discrete
representations of branch cuts.* In Fig. 3 we show the number of
these eigenvalues around the origin, inside circles of radius 1.0 and
2.0, as a function of M, . Both Figs. 2 and 3 show that the den-
sity of the eigenspectrum changes significantly as the freestream
Mach number increases from M., =0.1, corresponding to an in-
compressible regime, to M, =0.7, corresponding to a transonic
regime. However, for the transonicregime, M., =>0.7, the eigendis-
tribution dependence on M,, becomes less sensitive.

Fig. 1 Typical 129 X 51
node O grid around an
MBB A3 isolated airfoil.
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Fig. 2 Eigenvalues of unsteady flow about NACA 0012 airfoil for different Mach numbers at zero angle of attack.
G 3.0 T T T B. Reduced-Order Models of Unsteady Flow
E 25 | ,Q,Q:Q"Q Using the dominant eigenvalues and eigenmodes of the unsteady
g //8‘// flowfield around the MBB A3 airfoil, we constructedreduced-order
L 20+ /O,/’g// 1 models from which the unsteady pressure distribution due to air-
= r'd ~ . . . .
i} /’U/ﬂ/ foil motion can be computed. To increase the efficiency of the
2 157 O'////’Er/ O-—0 <10 ] redqced—order mode.l computation, namgly, to reduce the number
240l - O-—0 [A]<2.0 ] of eigenmodes required by Eq. (13), a shift s in the complex plane
5 o of the frequency domain was used. That is, in Eq. (7), the frequency
S os L . . L o was expressed in terms of the shifted frequency w,, defined
0.0 02 04 M 08 08 1.0 by jo, =jo—s. The unsteady potential equation, Eq. (7), than

Fig. 3 Number of eigenvalues |\| <1.0 and |\| < 2.0, of unsteady flow
about NACA 0012 airfoil for different Mach numbers at zero angle of
attack.

A few comments need to be made about the efficiency of the
eigensolver. As Mach number increased, the eigenspectrum of the
linearized unsteady flow became extremely dense and the Lanczos
eigensolver failed to converge for a few of the eigenvalues around
A =(—0.65,0.0) in the complex plane. However, as we shall see,
this does not affect the construction of the reduced-order model
itself.

Shown in Fig. 4 is the effect of angle of attack on the eigenvalue
distribution. As one can see, increasing the angle of attack has only
a modest effect on the eigenvalue distribution, especially for the
smaller eigenvalues, |4;] < 0.6. Also, the number of eigenvalues
around the origin, |4| < 1.0 and [4| < 2.0, variesinsignificantly (less
then 1%) as the angle of attack is varied.

Next, we compute the eigenspectrumof the MBB A3 nonsymmet-
ric airfoil for different angles of attack at the design Mach number,
M, =0.765. The results are presented in Fig. 5. These results are
consistent with the previous results for the symmetric NACA 0012
airfoil. Again, varying the angle of attack has only a modest ef-
fect of on the eigenvalue distribution. The number of eigenvalues
around the origin, |1 < 1.0 and |A| < 2.0, shows a relatively small
variation (less than 4%) and is about the same (within 8%) as for
the NACA 0012 airfoil at the same Mach number. It also appears
that the airfoil shape has little effect on the eigenspectrum distri-
bution. All these results suggest that, for high subsonic flows and
especially the transonic regime, the number of eigenvaluesrequired
for eigenmode-basedreduction will be higher than for low subsonic
flows.

becomes

(Ao + jo, AL, + 0?As,) @ =Dy, + jobi, + by, (28)

where, for example,

Ao =Ag + 5A;| — s’As (29)
Note that the quadratic form of Eq. (7) is maintained. Hence, the
reduced-ordermodeling techniques presented in Sec. I1I can be ap-
plied to Eq. (28) with some minor modifications. That is, in the
eigenmode analysis, the eigenmode-based and the Arnoldi-Ritz
reduced-order models, the frequency o, and the eigenvalues A and
Ar arereplacedby theircorrespondingshifted values. Then, Eq. (13)
becomes

G-/ - )% <1 (30)
By carefully choosing the shift s, the required number of eigen-
vectors in the reduced-order modeling, given by Eq. (30), can be
minimized.

We show in Fig. 6 the eigenmode selection for two reduced-order
models, each using a differentshift s. The first reduced-ordermodel
(ROM1) uses all of the 109 eigenvalues and corresponding eigen-
modes inside a circle centered at s =(0.0, 0.5) with a radius of 0.8.
These 109 eigenmodescorrespondto 1.6% of the total number of de-
grees of freedom (entries in the unknown vector ¢). With five static
corrections, this model should be valid for a range of reduced fre-
quencies 0 < & < 1. For the second reduced-ordermodel (ROM2),
we choose the shiftto be s =(0.75, 1.0). By selecting the shift point
s to be in the right-half plane, Eq. (30) allows us to select only the
most important eigenmodes, that is, those that are lightly damped
and therefore strongly excited by the harmonic excitations within
the described frequency range. The included eigenvalueslie mainly
in the first branch close to the vertical axis. We use all of the 237
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Fig. 6 Eigenmode selection for two reduced-order models of unsteady
flow about MBB A3 airfoil: ——, eigenvalues included in reduced-order
models; - - -, domain of validity of reduced-order models; mean flow
conditions: @ = — 0.5 deg, and M, = 0.79.

eigenmodes inside the rectangular box shown in Fig. 6. With five
static corrections, this model should be valid for a range of frequen-
cies 0 < <2 and uses only 3.6% of the total number of degrees of
freedom. Shown in Fig. 7 is the unsteady lift computed using direct
calculation and two reduced-ordermodels defined by the two shifts
and several static corrections. Both models are accurate in each of
their predicted range of frequencies.

A few remarks are in order about the computational efficiency of
the reduced-order models presented. For ROM1, the time to com-
pute the eigenmodes and then to construct the reduced order model
is about 12 times one direct calculation, whereas for ROM2 the
factor rises to about 40 times. Note that once the eigenmodes have
been computed, however, the unsteady aerodynamic response over
a range of frequencies and structural mode shapes of vibration can
be obtained for almost no additional cost.

For the same airfoil and flow conditions,namely the MBB A3 air-
foil pitching about quarter chord, at 6 =—0.5 deg and M,, =0.79,
we have also used the Arnoldi-Ritz reductiontechniqueto construct
reduced-ordermodels. We show in Fig. 8 the unsteady lift computed
using this approach. Two reduced-ordermodels are considered:one
with 37 states and a more accurate one with 73 states. These corre-
spondto 0.55% and 1.1% of the total number of degrees of freedom
(entries in the unknown vector ¢). For both Arnoldi-Ritz models,
we choose a shift s =(0.5, 0.5). The shifting technique ensures a
better convergence to the unsteady flow solution (with no static

459



460 FLOREA, HALL, AND DOWELL

0g
-2
&
.“j
> 4
ie)
]
o
[
ol
2 sl ™ Direct Solution
- o--0 ROM1, 1 static corrections ~
A&-—A ROM1, 5 static corrections \
o0 ROM2, 5 static corrections
_8 1] 1 1 I i 1 ] | 1
00 02 04 06 08 10 12 14 16 18 20
a) Reduced Frequency, @

16 @ T T T T
—— Direct Solution
12 o--0 ROM1, 1 static corrections 1
N-—A ROMA1, 5 static corrections
- o0 ROMZ2, 5 static corrections
s 87 )
£ Real ¢,
-] =
> 4 -
*)
[0
L
S e o i
5 0f
-4
Imag ¢,
h 00 02 04 06 08 10 12 14 16 18 20
b) Reduced Frequency, ©

Fig. 7 Unsteady lift on MBB A3 airfoil pitching about quarter chord; mean flow conditions: 0 =— 0.5 deg and M = 0.79; eigenmode-based reduced-

order models, a) lift due to plunging, and b) lift due to pitching.

o
_ _,N
2t Real ¢,
&
:‘:—J
e “
@
i}
2 S
Im
- sl — Direct Solution ad G, |
~° I'|o--0 ROM, 37 states
A ROM, 73 states

-8 L 1 2 L L L ! L L
00 02 04 06 08 1.0 12 14 16 18 20
a) Reduced Frequency, ©

16 : . . .
—— Direct Solution
12 - 0 --0 ROM, 37 states 1
A2 ROM, 73 states
-]
8 8r 1
= Real ¢,
= X
> 4+ -
T
[
2z
‘u:> M
S 9
4 Imag ¢, |
-8 . . . . . . . .
00 02 04 06 08 10 12 14 16 18 20
b) Reduced Frequency, &

Fig. 8 Unsteady lift on MBB A3 airfoil pitching about quarter chord; mean flow conditions: 0 = — 0.5 deg and M = 0.79; Ritz- Arnoldireduced-order

models, a) lift due to plunging, and b) lift due to pitching.

corrections) at the price of a poorer representation of the eigen-
spectrum of the unsteady flow. The computational time required to
compute the Arnoldi-Ritz vectors and the reduced-ordermodels are
about two times one direct calculation for the first model and about
four times for the second model. Both models are valid for a range of
reduced frequencies 0 <@® <2 and are more accurate than the pre-
vious eigenmode based reduction models, but require an order of
magnitude less computational time and a smaller number of states.

C. Flutter Analysis

We use the Arnoldi-Ritz reduction technique to compute the
flutter boundaries for the MBB A3 airfoil and the NASA Ames
Research Center design of the NACA 64A010 airfoil (called
64AMES herein). Both airfoils are described in Ref. 20. Calcula-
tions were made for each airfoil at different Mach numbers and
one mean angle of attack: 8 =—0.5 deg for the MBB A3 air-
foil and 6 =1.0 deg for the 64AMES airfoil. The structural pa-
rameters, described in Ref. 21, are a =-2, x, =1.8, r,? =3.48,
u =60, and @,/ o, =1.0.

First, we consider the MBB A3 airfoil at M, =0.79 and 6 =
—0.5 deg. We show in Fig. 9 the root locus of the aeroelastic eigen-
values for differentreducedvelocitiesii =V, /(bw,) computed with
two different reduced-order models. In the first model, we use 37
states (Arnoldi vectors), whereas for the second model we use a
much larger number of states, 181 vectors. For comparison we also
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Fig. 9 Root locus of aeroelastic eigenvalues of MBB A3 airfoil com-
puted with two Arnoldi-Ritz reduced-order models: Mo = 0.79, 6 =
— 0.5 deg.
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show the correspondingeigenvalueratio Ay, / @, calculated with the
classical V-g analysis, that is,

()] @) =(@utjor( + jg) 31)

where g is the required structural damping for neutral stability.??
For the case presented in Fig. 9, we assumed no structuraldamping,
Zavaitable =0. The corresponding V-g curve has physically meaning-
ful values only when it crosses the vertical axis at # =0 (no wind)
and at the flutter boundary & #0. Note that the curves based on

Root locus of aeroelastic eigenvalues of MBB A3 airfoil computed with Arnoldi-Ritz reduced-order models (37 states): 6 = — 0.5 deg.

aeroelastic reduced-order models are almost indistinguishable and
all of the three models predict the same flutter boundary within 0.1%
accuracy.

Next, we compute the root locus of aeroelastic eigenvalues for
different Mach numbers at the same incidence 8 =—0.5 deg. Re-
sults are shown in Fig. 10. Similar calculations were done for the
64AMES airfoil at 6 =1.0 deg. The flutter boundaries for the two
airfoils are shown in Fig. 11. Note that all our results were calcu-
lated holding the mean angle 6 fixed. This would correspond to a
different static twist and a different nominal angle of attack at each
point on the flutter curve. For comparison we also show the results
obtained under the same assumption (of fixed mean angle) by Bland
and Edwards?' and by Gallman et al.>* with XTRAN2L, transonic
small perturbation theory.

Although the two sets of results are qualitatively the same, there
are some quantitative differences, and these differences extend
even into the compressible subsonic regime. These differences are
mainly because for the same steady flow conditions, the present
full-potential model predicts higher steady loads than the one re-
portedin Refs. 21 and 23, especially for the MBB A3 airfoil. Simi-
lar mean steady flow pressure distribution differences for the MBB
A3 airfoil were also reported in Ref. 24. Note that we were able
to capture the minimum flutter speed index and the forming of a
second branch of the flutter boundary around M,, =0.80. However,
above M, =0.81, the shock becomes much stronger and attached
to the trailing edge, and the transonic full-potential model failed to
converge when computing the steady flow.

V. Conclusions

Two reduced-order modeling techniques for analyzing small-
disturbance, frequency-domain, unsteady transonic full-potential
flows around isolated airfoils have been presented. First, we have
performed an extensive eigenmode analysis of the discretized un-
steady flow equations. This analysis showed that eigenspectrum
density and distribution changes rapidly as the freestream Mach
number increases from the subsonic incompressible regime to the
incipient transonic regime. In the transonic regime, the eigendis-
tribution is less sensitive to variation in freestream Mach number.
Once the eigenvaluesand and correspondingeigenmodeshave been
computed, reduced-order models of the unsteady flows were com-
puted. The solution was divided into a dynamic part represented by



462 FLOREA, HALL, AND DOWELL

a linear combination of the eigenmodes plus one or more static cor-
rections. To reduce further the number of eigenmodes required in
the model reduction, a shifting strategy based on the eigenspectrum
distribution was employed. Depending on the range of frequencies
of interest, the eigenmode-based reduction can be an efficient ap-
proach, even for the transonic regime. However, for the transonic
regime, the computationaltime required to compute the eigenmodes
is much higher than for the low compressible regime.

We have also implemented a second reductiontechniquebased on
the Arnoldi-Ritz vectorsthemselves.In the block-Arnoldiiteration,
we used as starting vectors the vectors that define particular right-
hand side solutions of the linearized unsteady flow equation. Then,
during the Arnoldi iteration, we constructed an orthonormal basis
of vectors with which we represent the unsteady flowfield solution.
Our results show that although both eigenmode-basedand Arnoldi-
Ritz reductionmethods are computationallyefficient, the simplified
Arnoldi-Ritz approach of using right-hand side information to con-
struct reduced-order models is almost an order of magnitude more
efficient. Using the aerodynamic reduced-order models, we have
constructedaeroelasticreduced-ordermodels that are easy to use in
aeroelastic parametric studies. Flutter boundaries for different air-
foilsatseveral different Mach numbershave been computed. Finally,
we note that the form the Arnoldi-Ritz reduced-ordermodel is well
suited for the study of active control of aeroelastic and aeroacoustic
phenomena.
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