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Eigenmode Analysis and Reduced-Order Modeling of Unsteady
Transonic Potential Flow Around Airfoils

Razvan Florea,¤ Kenneth C. Hall,† and Earl H. Dowell‡

Duke University, Durham, North Carolina 27708-0300

An eigenmode analysis and reduced-order models of the unsteady transonic aerodynamic � ow around isolated
airfoilsare presented. The unsteady � ow is modeledusing the time-linearized frequency-domainunsteady transonic
full potential equation. The full potential was discretized in space using a � nite element method. The resulting
equations are linear in the unknown velocity potential and quadratic in the reduced frequency of excitation. The
dominant eigenfrequencies and corresponding mode shapes of the discretized potential model are computed, and
the effect of different parameters that determine the steady and unsteady � ow� eld (e.g., the far-� eld Mach number,
the angle of attack, and the airfoil shape)are investigated.A normalmodeanalysisand a static correction technique
are then used to construct a low degree-of-freedom, reduced-order model of the unsteady � ow� eld. Depending on
the range of frequencies of interest, a relatively small number of eigenmodes are required. An alternative reduced-
order modeling technique based on Arnoldi–Ritz vectors is also presented. For the case where the structural
excitations are known a priori, the latter method is more ef� cient. Using the aerodynamic reduced-order models,
we construct aeroelastic reduced-order models and compute � utter boundaries for different airfoils at several
different Mach numbers.

Nomenclature
AA = matrix operator for the Krylov/Arnoldi subspace
A0,1,2 = unsteady aerodynamic matrices

= state-space form unsteady aerodynamic matrix
F = aeroelastic matrix

a = pitch axis location, normalized by semichord
= state-space form unsteady aerodynamic matrix

F = aeroelastic matrix
b = semichord
b = frequency-independent vector, right-hand side of Eq. (8)
b0,1,2 = frequency-independent vectors, right-hand side of Eq. (7)
c = chord
cl = linearized unsteady lift coef� cient
cmea = linearized unsteady moment coef� cient about

the elastic axis
g(Nc ) = participation factor in the solution with Nc static

corrections, Eq. (11)
H(k) = nonsymmetric upper Hessenberg matrix
h = plunge degree of freedom
h = airfoil displacementvector, [h, a ]T

I2 = identity matrix of order 2
j =

p
¡ 1

K = nondimensionalelastic stiffness matrix
M = nondimensionalmass matrix
Nc = number of static corrections
q = vector of generalized linearized unsteady aerodynamic

forces, [cl , cmea]T

r a = radius of gyration, normalized by semichord
s = complex shift
T(k) = upper triangularmatrix at step k, Eq. (19)
T0,1

hq = matrices relating airfoil motion h to generalized forces q
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T 0,1
u q = matrices relating vector potential u to generalized

forces q
t = time
ū = reduced velocity, V1 / (b x a )
u = state-space solution vector
uD = dynamic part, state-space solution vector
uS = static part, state-space solution vector
V1 = freestream velocity
V(k) = orthonormal Arnoldi subspace
x , y = Cartesian coordinates
x a = static unbalance, normalized by semichord
xi , yi = right and left eigenvectors
zi , Z = eigenvector and matrix of eigenvectorsof H(k)

a = pitching degree of freedom
h = steady (mean) � ow angle of attack
k = eigenvalue, j x
k F = aeroelastic eigenvalue
l = mass ratio, m / ( p q b2)
m = arti� cial viscosity
q = static density
r i , R = eigenvalue,diagonal matrix of eigenvalues of H(k)

u = velocity potential
x = frequency, rad/s
¯x = reduced frequency, x c/ V1
x h = plunge natural frequency
x a = pitch natural frequency

I. Introduction

O VER the last decade, computational aerodynamic models of
unsteady � ows about airfoils and wings have become increas-

ingly sophisticated and accurate. However, when used in aeroe-
lastic analyses, such methods are extremely expensive. In most of
these analyses, time-marching, time-accurate computational � uid
dynamiccodesareused.Thesemodelshaveseveraladvantages:they
are well developedand documented, straightforward to implement,
and can be used in both linear and nonlinear analyses. Neverthe-
less, these computational models are not well suited to aeroelastic
calculations because they require relatively small time steps and,
therefore, require large amounts of CPU time. Furthermore, when
repeated calculations are required, the analysis must be run repeat-
edly, increasingcost. For each new structural parameter, frequency,
or mode shape of structural vibration, a complete new simulation
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is required. For a review of current trends in aeroelasticitywe refer
the reader to Refs. 1 and 2.

A � rst step in improving the computational ef� ciency of aeroe-
lastic analyses is to use time-linearized unsteady models. In this
approach, one assumes that the unsteady � ow� eld is decomposed
into a mean (steady) � ow and a small-disturbance unsteady � ow.
The resulting small-disturbance equations are time-invariant vari-
able coef� cient equations and can be formulated in either the time
or frequency domain. One � rst solves for the nonlinear mean � ow
and then for the time-linearized unsteady � ow. Although time-
linearized models are computationally more ef� cient then time-
nonlinear methods, they are subject to some of the same restric-
tions mentioned earlier when used for repeated computations with
different parameters.

Recently, so-calledreduced-ordermodels havebeendevelopedto
improve further the ef� ciency of unsteady aerodynamic and aeroe-
lastic analyses. Some of these techniques are well established in
structural dynamics and, therefore, it seems natural to extend them
to unsteady aerodynamics. In these methods, one reduces the large
number of degrees-of-freedom unsteady aerodynamic model to a
system with a much smaller number of states. At the same time,
one wants to preserve the accuracy of the original model for some
rangeof parameters,for example,over some rangeof frequenciesof
interest.Eigenmode-basedreduced-ordermodels for unsteadyaero-
dynamic � ows about airfoils, wings, and turbomachinery cascades
have been constructedby Hall,3 Florea and Hall,4 Romanowski and
Dowell,5 and Florea et al.6 Using this approach,the dominanteigen-
vectors of the linearizedunsteady � ows are computed, and then the
unsteady � ow solution is projected onto the space de� ned by these
vectors. One or more static corrections are applied to improve the
accuracy of the method.

Several other reduced-order modeling methods have been re-
cently developed. Baker et al.7 have applied internal balance re-
duction techniques to relatively simple two- and three-dimensional
� ows discretizedwith a vortex-latticemethod. Although the results
were promising, no complex unsteady � ow model reductions were
presented in Ref. 7.

More recently, reduced-order modeling technique based on
proper orthogonal decomposition have been developed. Exten-
sive reviews of this technique were published by Sirovich8 and
by Holmes et al.9 Romanowski10 has applied this method to cre-
ate aeroelastic reduced-order models of time-linearized unsteady
two-dimensional � ows around isolated airfoils. Kim11 used a sim-
ilar approach to create reduced-order models of time-linearized,
frequency-domain unsteady � ows around a three-dimensional
vortex-lattice model of a rectangular wing. At the same time,
Hall et al.12 constructed reduced-order models of time-linearized,
frequency-domainunsteady� ows around two-dimensionalisolated
airfoils and cascades.

In this paper, we present two reduced-ordermodeling techniques
of small-disturbance, frequency-domain, unsteady transonic full-
potential � ows around isolated airfoils. First, an eigenmode anal-
ysis of the unsteady � ow for several freestream Mach numbers,
angles of attack, and airfoil shapes is performed. Then, we apply
the conceptsdevelopedby Florea and Hall4 to constructeigenmode-
based reduced-ordermodels of the unsteady transonic� ow. We also
present an alternative and more ef� cient reduction techniquebased
on Arnoldi–Ritz vectors. The latter method is shown to be effec-
tive for the high subsonic and transonic regimes where the number
of eigenmodes required in the eigenmode-basedreduction is larger
than the correspondingnumber of Arnoldi–Ritz vectors.

II. Nonlinear Mean Flow and Linearized
Unsteady Flow� eld Description

We consider the unsteady transonic � ow around an isolated two-
dimensional airfoil due to vibratory motion of the airfoil. The � ow
is assumed irrotational and isentropic, and thus only weak shocks
are considered.Under these conditions, the unsteady transonic full-
potential equation can be used to model the � ow� eld around the
airfoil. The unsteady transonic full-potential equation is given by
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where ˆu is the velocity potential. The quantity ˆq is the local density
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where q T and pT are the total density and total pressure (assumed
to be constant throughout the entire � eld). Appropriate boundary
conditions are used to enforce the airfoil surface impermeability
condition, Kutta condition, and correct far-� eld behavior. Details
of the � ow linearization and discretization and of the boundary
conditions for subsonic � ows are given in Ref. 4.

A Galerkin � nite element method with isoparametric quadrilat-
eral bilinear elements is used to discretize the spatial derivativesof
the � ow equations and boundary conditions. This method is an ex-
tension of the variational � nite element method developed by Hall
for unsteady small-disturbance � ows.13 To improve the accuracy
of the method, we use a strained coordinatesystem that moves with
the airfoil near the airfoil and that is � xed in the far � eld. To produce
the numerical dissipation necessary for the stability of supersonic
� ow solutions and to capture possible shocks, the local density in
the divergence term of Eq. (1) is upwinded. Following Habashi and
Hafez,14 ˆq e , the local density in the element e of the � nite element
discretization, is replaced by

ˆ̃q e = ˆq e ¡ ˆm ( ˆq e ¡ ˆq e ¡ 1) (3)

where e ¡ 1 indicates the upstreamelement.The switchingoperator
ˆm is de� ned by Whitehead and Newton15 as

ˆm = m 0 + (1 ¡ 1/ M̂2), M̂ ¸ 1

ˆm = m 0 M̂2/ m 0 e ¡ m 1 ( M̂ ¡ 1)2
, M̂ < 1 (4)

with

M̂ = max(M̂e, M̂e ¡ 1) (5)

de� ning the local reference Mach number. The quantities m 0 and m 1

are constants with typical values m 0 =0.04 and m 1 =20.
A furthersimpli� cationis madebyassumingthat the unsteadiness

in the � ow is small compared to the mean � ow. This is consistent
with the onset of � utter where the airfoil vibration and the resulting
unsteady � ow are small. The unsteady velocity potential and the
moving grid are assumed to be harmonic in time, with frequency x .
For example,

ˆu (x , y) = U (x , y) + u (x , y) e j x t (6)

where u is the unsteady small-disturbance potential and U is the
mean (steady) � ow potential. Next, we time linearize the spatially
discretized, unsteady full-potential system of equations. First, by
collecting the zeroth-order terms from the linearization, we obtain
a nonlinear system of equations that describes the mean � ow. This
system is just the discretizationof the steady form of Eqs. (1–5) and
the appropriateboundaryconditions.Next, collecting the � rst-order
terms from the linearization,we obtain a linear variable coef� cient
matrix equation for the unsteady small-disturbance � ow in the fre-
quency domain. The resulting discretized unsteady � eld equations
and the corresponding boundary conditions have a quadratic form
in the frequency domain x , namely,

¡
A0 + j x A1 + x 2A2

¢
Á = b0 + j x b1 + x 2b2 (7)

where the matrices A0, A1, and A2 are real nonsymmetric n £ n
matrices, and where n is the number of unknown entries in the
vector Á. The matrices A0, A1 , and A2 depend only on the nonlinear
mean � ow solution,while the vectorsb0 , b1 , and b2 depend on both
the mean � ow solution and the prescribed motion of the airfoil.
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We solve for the steady nonlinear mean � ow solution using
a direct Newton method. For the linearized unsteady equation,
Eq. (7), the usual approach is to form the matrix coef� cient
A( x ) =A0 + j x A1 + x 2A2 for eachfrequency x and modeof vibra-
tion (e.g., pitch or plunge) and then solve the resultingsystem using
lower-upper (LU) decomposition. In the next section, we describe
two alternative reduced-ordermodeling approaches.

III. Reduced-Order Modeling
A. Aerodynamic Reduced-Order Modeling Using Eigenmodes

An alternative approach for solving Eq. (7) is to use a normal
mode analysis. First we observe that the right-hand side of Eq. (7)
is a linear combination of the frequency-independent vectors b0,
b1 and b2 . Hence, one can solve Eq. (7) for each constant right-
hand side vector bi and then use the superpositionmethod to obtain
the solution of the original equation. To simplify our analysis, we
assume that the right-hand side in Eq. (7) is a constant vector b.
Also, for convenience,we rewrite this equation in state-space form,
that is,
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where G is any nonsingular matrix. We � rst solve for the lower-
frequencyeigenvalues k i and the correspondingright and left eigen-
vectors, xi and yi , of the homogeneous form of the matrix system
Eq. (8), that is,

xi ¡ k i xi = 0, yT
i ¡ k i yT

i = 0 (9)

To compute the eigenvaluesand the correspondingeigenvectorsnu-
merically, one can use iterative Krylov techniques. We apply the
non-symmetric Lanczos (see Ref. 16) and the block-Arnoldi (see
Ref. 17) algorithms, both implemented to take into account the
sparse, quadratic, generalized form of Eqs. (8) and (9).

Next, following Ref. 4, the unsteady solution is divided into two
parts, a generalizedstatic part uS , that does not dependon the eigen-
frequencies and eigenmodes, but may depend on the frequency of
excitation x , and a generalized dynamic part uD , that depends on
both the eigeninformation (eigenfrequenciesand eigenmodes) and
the frequency, that is,

u =
NcX

k = 1

( j x )k ¡ 1uS,k

| {z }
+

mX

i = 1

gi
(Nc)xi

| {z }
uS uD

(10)

where gi
(Nc) is the participation factor given by

gi
(Nc) = ( j x / k i )

Nc
£
yT

i b̄ ê ( k i ¡ j x )
¤

(11)

The static correction terms are de� ned by

uS, 1 = b̄, uS ,k = uS ,k ¡ 1 (12)

for k > 1. Nc is the number of static corrections and m ¿ 2n is the
number of eigensolutions used in the modal expansion. We seek
a solution Á given by Eqs. (10–12) that approximates the exact
solution, the latter corresponding to m =2n. That is, we want to
reduce the contributionof the neglectedmodeswithout substantially
increasingm . We can reduce the importanceof each neglectedmode
by requiring that

j j x / k i j Nc ¿ 1 (13)

for all of the neglected eigenmodes, i > m. Hence, we need to com-
pute all of the eigenvalues and corresponding eigenmodes in the
range of frequency of interest, and Nc should be as large as pos-
sible. However, the leading-order terms in each of the two series
grow rapidly with increasing Nc . For large Nc , signi� cant roundoff

errors in the evaluation of the sum of two series in Eq. (13) occur
and the method breaks down. We have found that good results are
generallyobtained for values of Nc between one and six (see Ref. 4
for details).

In the next section we will examine more closely the eigenvector
solver as part of the reduced-ordermodeling technique and provide
an alternative reduced-ordermodel construction.

B. Aerodynamic Reduced-Order Modeling
Using Arnoldi–Ritz Vectors

We use Krylov subspace methods to compute the eigenmodes
of interest. These methods are ef� cient as long as the number
of eigenfrequencies of interest is small. In such methods, start-
ing with an initial arbitrary vector W1 and for the matrix opera-
tor AA = ¡ 1 , one computes iteratively a sequence of vectors,
W2 =AAW1, W3 =AAW2 , and so on, called Krylov vectors. These
vectors forma subspacethat approximatesthe subspaceof dominant
right eigenvectorsof the eigenvalueproblem de� ned by Eq. (9). We
denote the matrix formed with the � rst k Krylov vectors by W(k) ,
that is,

W(k) =
£
W1 j AAW1 j ¢ ¢ ¢ j Ak ¡ 1

A W1

¤
(14)

If we choose the initial vector W1 to be

W1 = uS, 1 = ¡ 1 b̄ (15)

then the static contributionin Eq. (10) uS is just a linear combination
of the columns of the Krylov matrix W(k) , that is,

uS = W (k) X , X = [1 j j x j ¢ ¢ ¢ j ( j x )k ¡ 1]T (16)

The Krylov iteration becomes unstableafter a few steps, unless it
is coupled with an orthonormalizationprocess. For example, in the
Arnoldi method, one starts with a unit vector V1 =W1 / k W1 k 2 , and,
at step k, the new vector AAVk ¡ 1 is � rst orthonormalized against
previousvectorsV1 to Vk ¡ 1 before it is introducedas the new vector
Vk in the sequence. These vectors are now called Arnoldi vectors
and they form the (2n £ k) orthonormalmatrix V(k) and satisfy the
relation

H(k) = V(k) H
( ¡ 1 )| {z } V(k)

AA

(17)

where H(k) is a complex nonsymmetric upper Hessenberg matrix
whose columns are easily computed during the Arnoldi iteration.
The dominant eigenvalues of the matrix AA are approximated by
the dominant eigenvalues of the upper Hessenberg matrix H(k) . We
denote by r i and zi the i th largest eigenvalueand the corresponding
eigenvector of the matrix H(k) , and k i and xi are approximated by

k i ¼ 1/ r i , xi ¼ V(k)zi (18)

Note that V(k) and W(k) span the same vector space and

W (k) = V(k)T(k) (19)

where T(k) is a (k £ k) upper triangularmatrix.
Taking into account Eqs. (10), (11), (16), (18), and (19), the

reduced-ordermodel solutioncan be written as a linear combination
of the columns of V(k) , that is,

u = ¯V(k)
¡
Zg + T(k) X

¢
, ¯ = k uS , 1 k 2 (20)

For known external excitations (airfoil motions), it is convenient
to use V1 =uS,1 /¯ as the starting vector in the Arnoldi iteration
without explicitly computing the eigenmodes de� ned by Eq. (9).
This approach eliminates the need of a separate static correction
step and greatly simpli� es the reduced-order modeling algorithm.
This method, a form of Ritz-based reduction, is similar to methods
widely used in structural dynamics.18,19

Note that in the case of multiple right-hand side excitations (air-
foil motions), the Krylov subspace iteration is replaced by a block-
Krylov method.17 For example, we consider the case of an isolated
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airfoil in pitch and plunge motion described by the airfoil displace-
ment vector h. We can write the Ritz–Arnoldi approximatesolution
as

u = V(k)ZuR (21)

We substitute Eq. (21) into the original Eq. (8), we multiply at the
left by ¡ 1 and then by V(k) H

, and, taking into account the property
stated in Eq. (17), we obtain

uR = (I ¡ j x R ) ¡ 1z ¡ 1¯

2

4
I2

j x I2

x 2I2

3

5h (22)

where R is the diagonal matrix of the eigenvalues of H(k) . The
orthonormal matrix V(k) is determined iteratively during the block
Arnoldi iteration with V1 being the starting block (matrix). The
(2n £ 6) matrix V1 and the (6 £ 6) upper triangular matrix ¯ are
de� ned by the equation

V1 [ ¯0 ¯1 ¯2 ]| {z } = ¡ 1 [b0h b0 a| {z } j b1h b1a| {z } j b2h b2a ]| {z }
¯ b̄0 b̄1 b̄2

(23)

where ¯0 , ¯1, ¯2 are now (k £ 2) matrices, and b̄0 , b̄1, and b̄2 are
(2n £ 2) matrices.

Note that similar Ritz reduced-order models can be constructed
around the Lanczos algorithm. For our analysis we found that the
nonsymmetric Lanczos algorithm proved to be more reliable for
eigenmodecomputations,whereas the block Arnoldi algorithmwas
more ef� cient for the direct Ritz reduction.

C. Flutter Analysis: Aeroelastic Reduced-Order Modeling

We considerhere a two-degree-of-freedomairfoil. The structural
dynamic equations in plunge and pitch can be written as

M K0
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z }| {³
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¡
T 0

hq + j x T1
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¢
h (24)

The matrices T 0,1
u q and T 0,1

hq relate the potential vector Á and the
airfoil motion h to the generalized forces q acting on the airfoil.
These matrices are obtained by integrating the linearized unsteady
pressure distribution over the airfoil. By combining the unsteady
aerodynamic equations, Eq. (8), and the structural dynamic equa-
tions, Eq. (24), the aeroelastic eigenvalue equations in state-space
form are obtained, that is,
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where the matrices

T 0
uq =

£
0 j T0

u q

¤
, T1

uq =
£

0 j T1
u q

¤
(26)

relate the state-space vector u to the generalized forces q acting on
the airfoil.

Note that the � utter matrices F and F are quite large, of order
(2n + 4), and depend on both aerodynamic and structural param-
eters. Using the Arnoldi–Ritz reduced-orderaerodynamic solution,

described by Eqs. (22) and (23), the eigenvalue problem Eq. (25)
can be reduced to a much smaller reduced-orderaeroelastic system
of equations, that is,
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The aeroelastic reduced-order model can be used to compute the
aeroelastic eigenvalues inside the domain of reduced frequencies
where the aerodynamic reduced-ordermodel is valid.

IV. Results
In this section, we present an eigenmode analysis and construct

reduced-order models for unsteady � ows around two isolated air-
foils, a NACA 0012 symmetric airfoil and an MBB A3 nonsymmet-
ric airfoil.We also compute � utter boundariesof the MBB A3 airfoil
and NACA 64A010 (NASA Ames Research Center) airfoils for dif-
ferent Mach numbers. The computational grids used in all cases
presented are O grids with a radius of 10 chords, with 129 £ 51
mesh points (129 nodes around the airfoil and 51 nodes in the radial
direction). A typical grid is shown if Fig. 1. This mesh point den-
sity is suf� cient to ensure accurate steady solutions and unsteady
solutions up to a reduced frequency of ¯x =2.0.

A. Eigenspectrum

We � rst consider the steady and small perturbationunsteady� ow
around a NACA 0012 airfoil for several different Mach numbers
and angles of attack. In each of these cases, we compute the eigen-
spectrum of the corresponding discretized unsteady potential � ow.
Shown in Fig. 2 is the eigenvalue distributionfor the unsteady � ow
around a NACA 0012 airfoil for several different freestream Mach
numbers M 1 at zero angle of attack. For each of these cases we
also show the steady Mach number distributionover the airfoil. For
M 1 =0.1, the � ow is, for all practical matters, incompressible.For
M 1 =0.7, the � ow� eld is close to transonic,the highest localMach
number on the airfoil being 0.94. For M 1 =0.85, the � ow� eld be-
comes strongly transonic and the isentropic potential � ow model
is less accurate. Note that around the origin, the eigenspectrum is
de� ned by lines of eigenvalues that emanate from the origin. These
eigenvaluestend to be very close, and closer as the freestreamMach
number increases.These lines of eigenvaluescorrespondto discrete
representations of branch cuts.4 In Fig. 3 we show the number of
these eigenvaluesaround the origin, inside circles of radius 1.0 and
2.0, as a function of M 1 . Both Figs. 2 and 3 show that the den-
sity of the eigenspectrum changes signi� cantly as the freestream
Mach number increases from M 1 =0.1, corresponding to an in-
compressible regime, to M 1 =0.7, corresponding to a transonic
regime. However, for the transonic regime, M 1 ¸ 0.7, the eigendis-
tribution dependence on M 1 becomes less sensitive.

Fig. 1 Typical 129 £ £ 51
node O grid around an
MBB A3 isolated airfoil.
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Fig. 2 Eigenvalues of unsteady � ow about NACA 0012 airfoil for different Mach numbers at zero angle of attack.

Fig. 3 Number of eigenvalues j j̧ < 1:0 and j ¸ j < 2:0, of unsteady � ow
about NACA 0012 airfoil for different Mach numbers at zero angle of
attack.

A few comments need to be made about the ef� ciency of the
eigensolver. As Mach number increased, the eigenspectrum of the
linearized unsteady � ow became extremely dense and the Lanczos
eigensolver failed to converge for a few of the eigenvalues around
k =( ¡ 0.65, 0.0) in the complex plane. However, as we shall see,
this does not affect the construction of the reduced-order model
itself.

Shown in Fig. 4 is the effect of angle of attack on the eigenvalue
distribution.As one can see, increasing the angle of attack has only
a modest effect on the eigenvalue distribution, especially for the
smaller eigenvalues, j k i j < 0.6. Also, the number of eigenvalues
around the origin, j k j < 1.0 and j k j < 2.0, varies insigni� cantly (less
then 1%) as the angle of attack is varied.

Next,we computetheeigenspectrumof theMBB A3 nonsymmet-
ric airfoil for different angles of attack at the design Mach number,
M 1 =0.765. The results are presented in Fig. 5. These results are
consistent with the previous results for the symmetric NACA 0012
airfoil. Again, varying the angle of attack has only a modest ef-
fect of on the eigenvalue distribution. The number of eigenvalues
around the origin, j k j < 1.0 and j k j < 2.0, shows a relatively small
variation (less than 4%) and is about the same (within 8%) as for
the NACA 0012 airfoil at the same Mach number. It also appears
that the airfoil shape has little effect on the eigenspectrum distri-
bution. All these results suggest that, for high subsonic � ows and
especially the transonic regime, the number of eigenvaluesrequired
for eigenmode-basedreductionwill be higher than for low subsonic
� ows.

B. Reduced-Order Models of Unsteady Flow

Using the dominant eigenvaluesand eigenmodes of the unsteady
� ow� eld around the MBB A3 airfoil, we constructedreduced-order
models from which the unsteady pressure distribution due to air-
foil motion can be computed. To increase the ef� ciency of the
reduced-order model computation, namely, to reduce the number
of eigenmodes required by Eq. (13), a shift s in the complex plane
of the frequencydomain was used. That is, in Eq. (7), the frequency
x was expressed in terms of the shifted frequency x s , de� ned
by j x s = j x ¡ s. The unsteady potential equation, Eq. (7), than
becomes

¡
A0s + j x s A1s + x 2

s A2s

¢
Á = b0s + j x sb1s + x 2

s b2s (28)

where, for example,

A0s = A0 + sA1 ¡ s2A2 (29)

Note that the quadratic form of Eq. (7) is maintained. Hence, the
reduced-ordermodeling techniques presented in Sec. III can be ap-
plied to Eq. (28) with some minor modi� cations. That is, in the
eigenmode analysis, the eigenmode-based and the Arnoldi–Ritz
reduced-order models, the frequency x , and the eigenvalues k and
k F are replacedby theircorrespondingshiftedvalues.Then, Eq. (13)
becomes

j ( j x ¡ s) / ( k i ¡ s) j Nc ¿ 1 (30)

By carefully choosing the shift s, the required number of eigen-
vectors in the reduced-order modeling, given by Eq. (30), can be
minimized.

We show in Fig. 6 the eigenmodeselection for two reduced-order
models, each using a different shift s. The � rst reduced-ordermodel
(ROM1) uses all of the 109 eigenvalues and corresponding eigen-
modes inside a circle centered at s =(0.0, 0.5) with a radius of 0.8.
These109eigenmodescorrespondto 1.6%of the totalnumberof de-
grees of freedom (entries in the unknown vector Á). With � ve static
corrections, this model should be valid for a range of reduced fre-
quencies 0 · ¯x · 1. For the second reduced-ordermodel (ROM2),
we choose the shift to be s =(0.75, 1.0). By selecting the shift point
s to be in the right-half plane, Eq. (30) allows us to select only the
most important eigenmodes, that is, those that are lightly damped
and therefore strongly excited by the harmonic excitations within
the described frequency range. The included eigenvalueslie mainly
in the � rst branch close to the vertical axis. We use all of the 237
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Fig. 4 Eigenvalues of unsteady � ow about NACA 0012 airfoil at different angles of attack, M 1 = 0:75.

Fig. 5 Eigenvalues of unsteady � ow about MBB A3 airfoil at different angles of attack, M 1 = 0:765.

Fig. 6 Eigenmode selection for two reduced-order models of unsteady
� ow aboutMBB A3 airfoil: ——, eigenvalues included in reduced-order
models; – – – , domain of validity of reduced-order models; mean � ow
conditions: µ = ¡ 0:5 deg, and M1 = 0:79.

eigenmodes inside the rectangular box shown in Fig. 6. With � ve
static corrections,this model should be valid for a range of frequen-
cies 0 · ¯x ·2 and uses only 3.6% of the total number of degreesof
freedom. Shown in Fig. 7 is the unsteady lift computed using direct
calculation and two reduced-ordermodels de� ned by the two shifts
and several static corrections. Both models are accurate in each of
their predicted range of frequencies.

A few remarks are in order about the computationalef� ciency of
the reduced-order models presented. For ROM1, the time to com-
pute the eigenmodes and then to construct the reduced order model
is about 12 times one direct calculation, whereas for ROM2 the
factor rises to about 40 times. Note that once the eigenmodes have
been computed, however, the unsteady aerodynamic response over
a range of frequencies and structural mode shapes of vibration can
be obtained for almost no additional cost.

For the same airfoil and � ow conditions,namely the MBB A3 air-
foil pitching about quarter chord, at h = ¡ 0.5 deg and M 1 =0.79,
we have also used the Arnoldi–Ritz reductiontechniqueto construct
reduced-ordermodels.We showin Fig. 8 the unsteadylift computed
using this approach.Two reduced-ordermodels are considered:one
with 37 states and a more accurate one with 73 states. These corre-
spond to 0.55% and 1.1% of the total number of degreesof freedom
(entries in the unknown vector Á). For both Arnoldi–Ritz models,
we choose a shift s =(0.5, 0.5). The shifting technique ensures a
better convergence to the unsteady � ow solution (with no static
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Fig. 7 Unsteady lift on MBB A3 airfoil pitching about quarter chord; mean � ow conditions: µ = ¡ 0:5 deg and M1 = 0:79; eigenmode-based reduced-
order models, a) lift due to plunging, and b) lift due to pitching.

Fig. 8 Unsteady lift on MBB A3 airfoilpitchingaboutquarter chord;mean � ow conditions:µ = ¡ 0:5 deg andM 1 = 0:79;Ritz–Arnoldireduced-order
models, a) lift due to plunging, and b) lift due to pitching.

corrections) at the price of a poorer representation of the eigen-
spectrum of the unsteady � ow. The computational time required to
compute the Arnoldi–Ritz vectorsand the reduced-ordermodels are
about two times one direct calculation for the � rst model and about
four times for the secondmodel. Both models are valid for a rangeof
reduced frequencies 0 · ¯x ·2 and are more accurate than the pre-
vious eigenmode based reduction models, but require an order of
magnitude less computational time and a smaller number of states.

C. Flutter Analysis

We use the Arnoldi–Ritz reduction technique to compute the
� utter boundaries for the MBB A3 airfoil and the NASA Ames
Research Center design of the NACA 64A010 airfoil (called
64AMES herein). Both airfoils are described in Ref. 20. Calcula-
tions were made for each airfoil at different Mach numbers and
one mean angle of attack: h = ¡ 0.5 deg for the MBB A3 air-
foil and h =1.0 deg for the 64AMES airfoil. The structural pa-
rameters, described in Ref. 21, are a = ¡ 2, x a =1.8, r a

2 =3.48,
l =60, and x h / x a =1.0.

First, we consider the MBB A3 airfoil at M 1 =0.79 and h =
¡ 0.5 deg. We show in Fig. 9 the root locus of the aeroelastic eigen-
valuesfordifferentreducedvelocitiesū =V1 / (b x a ) computedwith
two different reduced-order models. In the � rst model, we use 37
states (Arnoldi vectors), whereas for the second model we use a
much larger number of states, 181 vectors. For comparison we also

Fig. 9 Root locus of aeroelastic eigenvalues of MBB A3 airfoil com-
puted with two Arnoldi–Ritz reduced-order models: M 1 = 0:79, µ =
¡ 0:5 deg.
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Fig. 10 Root locus of aeroelastic eigenvalues of MBB A3 airfoil computed with Arnoldi–Ritz reduced-order models (37 states): µ = ¡ 0:5 deg.

Fig. 11 Flutter boundaries for MBB A3 airfoil at µ = ¡ 0:5 deg and
64AMES atµ = 1:0 deg computed with transonic full-potential/Arnoldi–
Ritz reduction technique (present method).

show the correspondingeigenvalueratio k Vg / x a calculatedwith the
classical V–g analysis, that is,

¡
k Vg

ê x a

¢ ¡ 2
= ( x a / j x )2(1 + jg) (31)

where g is the required structural damping for neutral stability.22

For the case presented in Fig. 9, we assumed no structuraldamping,
gavailable =0. The correspondingV–g curve has physicallymeaning-
ful values only when it crosses the vertical axis at ū =0 (no wind)
and at the � utter boundary ū 6=0. Note that the curves based on

aeroelastic reduced-order models are almost indistinguishableand
all of the threemodels predict the same � utterboundarywithin 0.1%
accuracy.

Next, we compute the root locus of aeroelastic eigenvalues for
different Mach numbers at the same incidence h = ¡ 0.5 deg. Re-
sults are shown in Fig. 10. Similar calculations were done for the
64AMES airfoil at h =1.0 deg. The � utter boundaries for the two
airfoils are shown in Fig. 11. Note that all our results were calcu-
lated holding the mean angle h � xed. This would correspond to a
different static twist and a different nominal angle of attack at each
point on the � utter curve. For comparison we also show the results
obtainedunder the same assumption (of � xed mean angle) by Bland
and Edwards21 and by Gallman et al.23 with XTRAN2L, transonic
small perturbation theory.

Although the two sets of results are qualitatively the same, there
are some quantitative differences, and these differences extend
even into the compressible subsonic regime. These differences are
mainly because for the same steady � ow conditions, the present
full-potential model predicts higher steady loads than the one re-
ported in Refs. 21 and 23, especially for the MBB A3 airfoil. Simi-
lar mean steady � ow pressure distribution differences for the MBB
A3 airfoil were also reported in Ref. 24. Note that we were able
to capture the minimum � utter speed index and the forming of a
second branch of the � utter boundaryaround M 1 =0.80. However,
above M 1 =0.81, the shock becomes much stronger and attached
to the trailing edge, and the transonic full-potentialmodel failed to
converge when computing the steady � ow.

V. Conclusions
Two reduced-order modeling techniques for analyzing small-

disturbance, frequency-domain, unsteady transonic full-potential
� ows around isolated airfoils have been presented. First, we have
performed an extensive eigenmode analysis of the discretized un-
steady � ow equations. This analysis showed that eigenspectrum
density and distribution changes rapidly as the freestream Mach
number increases from the subsonic incompressible regime to the
incipient transonic regime. In the transonic regime, the eigendis-
tribution is less sensitive to variation in freestream Mach number.
Once the eigenvaluesand and correspondingeigenmodeshave been
computed, reduced-order models of the unsteady � ows were com-
puted. The solution was divided into a dynamic part representedby
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a linear combinationof the eigenmodes plus one or more static cor-
rections. To reduce further the number of eigenmodes required in
the model reduction,a shifting strategybased on the eigenspectrum
distribution was employed. Depending on the range of frequencies
of interest, the eigenmode-based reduction can be an ef� cient ap-
proach, even for the transonic regime. However, for the transonic
regime, the computationaltime requiredto compute the eigenmodes
is much higher than for the low compressible regime.

We have also implementeda secondreductiontechniquebasedon
the Arnoldi–Ritz vectors themselves.In the block-Arnoldiiteration,
we used as starting vectors the vectors that de� ne particular right-
hand side solutions of the linearized unsteady � ow equation. Then,
during the Arnoldi iteration, we constructed an orthonormal basis
of vectors with which we represent the unsteady � ow� eld solution.
Our results show that althoughboth eigenmode-basedand Arnoldi–
Ritz reductionmethodsare computationallyef� cient, the simpli� ed
Arnoldi-Ritz approach of using right-hand side information to con-
struct reduced-ordermodels is almost an order of magnitude more
ef� cient. Using the aerodynamic reduced-order models, we have
constructedaeroelasticreduced-ordermodels that are easy to use in
aeroelastic parametric studies. Flutter boundaries for different air-
foilsat severaldifferentMachnumbershavebeencomputed.Finally,
we note that the form the Arnoldi–Ritz reduced-ordermodel is well
suited for the study of active control of aeroelastic and aeroacoustic
phenomena.
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